Metabolic constraints drive self-organization of specialized cell groups

Author:

Varahan SriramORCID,Walvekar AdhishORCID,Sinha Vaibhhav,Krishna SandeepORCID,Laxman SunilORCID

Abstract

AbstractHow phenotypically distinct states in isogenic cell populations appear and stably co-exist remains an unresolved question. We find that within a clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such assembly. Beginning in a gluconeogenic state, cells in a contrary state, exhibiting high pentose phosphate pathway activity, spontaneously appear and proliferate, in a spatially constrained manner. The gluconeogenic cells in the developing colony produce a resource, which we identify as trehalose. At threshold concentrations of trehalose, cells in the new metabolic state emerge and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3