A preliminary investigation on the dependence of arthropod diversity on vegetation diversity across four contrasting ecosystems in Hanthana mountain range of Sri Lanka

Author:

Weerathunga W.A.M.T.,Athapaththu A.M.G.K.,Amarasinghe L.D.

Abstract

AbstractArthropods contribute significantly to biodiversity and vegetation provides a habitat and resources for them to survive, exist and propagate. We report a preliminary investigation on the extent to which arthropod diversity is dependent upon vegetation diversity across different ecosystems in a humid tropical climate. We determined the diversity of arthropods in four ecosystems closely-located ecosystems with different vegetation. Vegetation surrounding an aquatic environment (AQ), a broad-leaved wet, evergreen forest ecosystem (BL), a Pinus caribaea monoculture plantation (PN) and a Pinus plantation artificially enriched with indigenous broad-leaved tree species (PNEN) located in the Hanthana mountain range in Central Sri Lanka were selected. In each environment, arthropods were sampled in three randomly-selected sites (5 m x 5 m) using four sampling methods. Collected arthropods were identified upto the highest possible taxa using standard identification keys. Simultaneously, vegetation diversity was determined via a plant census. Arthropod and vegetation diversities were computed separately for each site using Shannon-Wiener Index (H).Within the 300 m2 area of observation plots, arthropod individuals belonging to 68 species and 43 families were found. AQ had the greatest arthropod diversity (H=2.642), dominated by Olios spp. followed by BL (H=2.444), dominated by three arthropods, namely, a tettigonid species, Oxytate spp. and Psechrus spp. PN had the next highest arthropod diversity (H=1.411), dominated by Dicaldispa spp. The lowest arthropod diversity was found at PNEN (H=1.3500), dominated by an ant species. Contrastingly, PNEN had the highest plant diversity (H=2.614) and PN the lowest (H=0.879). AQ (H=1.810) and BL (H=1.871) had intermediate values.In a regression involving data from AQ, BL and PN, arthropod diversity was linearly dependent on plant diversity (R2=0.423) whereas it was not so when PNEN was also included (R2=0.008). This finding supports the hypothesis that while higher plant diversity contributes to greater arthropod diversity in ecosystems where human intervention is minimal, artificial enrichment of plant diversity does not necessarily increase arthropod diversity in the short-to medium-term. Further investigations are needed to substantiate these preliminary findings and validate the above hypothesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3