Acute toxicity of the plant volatile indole depends on herbivore specialization

Author:

Maurya Abhinav K.ORCID,Patel Rakhi C.,Frost Christopher J.ORCID

Abstract

AbstractHerbivore-induced plant volatiles (HIPVs) provide direct benefits to plants as antimicrobials and herbivore repellents, but their potential as direct toxins to herbivores is unclear. Here we assayed the larvicidal activity of six common HIPVs from three different biochemical pathways and tested the hypothesis that the larvicidal activity of HIPVs is related to the host specialization of the insect pest. We first assessed β-caryophyllene, linalool, z-3-hexenyl acetate, z-3-hexenol, e-2-hexenol, and indole against the beet armyworm (Spodoptera exigua), and found that indole was 7-fold more toxic compared to the other volatiles when incorporated into diet. Then, we tested the larvicidal activity of indole against six common, destructive pest caterpillars with varying host ranges. Consistent with our hypothesis, indole toxicity varied with caterpillar host range: indole toxicity was seven-fold higher in more specialized insect species relative to generalist insect species. That said, the LC50 of indole was comparable to other reported anti-herbivore agents even against the generalist caterpillars. Yet, indole in headspace had neither larvicidal nor ovicidal activity on any caterpillar species tested. These results support a key ecological precept regarding tradeoffs between host specialization and chemical detoxification, and also indicate that indole functions as a direct defense against herbivores that could be potentially useful in integrated pest management strategies.Key messageWe measured the direct toxicity of six common HIPVs against the beet armyworm.Indole was the most toxic HIPV against the beet armyworm.We determined the toxicity of indole against six different pest caterpillar species.Toxicity of indole was associated with the host preference of the insect species.Indole exposure in headspace had no effect on egg hatching or caterpillar survival.Indole has the potential to be developed as an insecticide against crop pests.Author Contribution StatementCJF and AKM designed research. AKM and RCP conducted experiments. AKM and CJF analyzed data and wrote the manuscript. All authors read and approved the manuscript.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3