Tfap2a is a novel gatekeeper of differentiation in renal progenitors during kidney development

Author:

Chambers Brooke E.,Gerlach Gary F.,Chen Karen H.,Clark Eleanor G.,Leshchiner Ignaty,Goessling Wolfram,Wingert Rebecca A.ORCID

Abstract

AbstractRenal functional units known as nephrons undergo patterning events during development that create a segmental array of cellular populations with discrete physiological tasks. Knowledge about the terminal differentiation programs of each nephron segment has central importance for understanding kidney disease and to advance regenerative medicine, as mammalian nephrons grown in organoid cultures from pluripotent cells fail to terminally differentiate. Here, from a novel forward genetic screen using zebrafish we report the discovery that transcription factor AP-2 alpha (tfap2a) coordinates a gene regulatory network that controls the progression of nephron distal segment progenitors into the differentiated state. Overexpression of tfap2a rescued differentiation in mutants and caused ectopic expression of distal segment markers in wild-type nephrons, indicating tfap2a is sufficient to instigate the distal segment differentiation program. tfap2a/2b deficiency exacerbated distal nephron segment differentiation defects, revealing functional redundancy where tfap2a has a dominant role upstream of its family member. With further genetic studies, we assembled a blueprint of the tfap2a gene regulatory network during nephrogenesis. We demonstrate that tfap2a acts downstream of Iroquois homeobox 3b, a conserved distal lineage transcription factor. tfap2a controls a circuit consisting of irx1a, tfap2b, and genes encoding solute transporters that dictate the specialized metabolic functions of the distal nephron segments, and we show for the first time that this regulatory node is distinct from the pathway circuits controlling aspects such as apical-basal polarity and ciliogenesis during the differentiation process. Thus, our studies reveal new insights into the genetic control of differentiation, where tfap2a regulates the suite of segment transporter traits. These findings have relevance for understanding renal birth defects, as well as efforts to recapitulate nephrogenesis in vivo to make functional units that can facilitate organoid applications such as drug discovery and regenerative therapies.Summary StatementHere, we report for the first time that transcription factor AP-2 alpha (tfap2a) controls the progression from nephron progenitor into the fully differentiated state. This fundamentally deepens our knowledge about the genetic control of kidney development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3