Single-step genome-wide association study for resistance toPiscirickettsia salmonisin rainbow trout (Oncorhynchus mykiss)

Author:

Marín-Nahuelpi RodrigoORCID,Barría AgustínORCID,Cáceres PabloORCID,López María E.ORCID,Bassini Liane N.ORCID,Lhorente Jean P.ORCID,Yáñez José M.ORCID

Abstract

ABSTRACTOne of the main pathogens affecting rainbow trout (Oncorhynchus mykiss) farming is the facultative intracellular bacteriaPiscirickettsia salmonis. Current treatments, such as antibiotics and vaccines, have not had the expected effectiveness in field conditions. Genetic improvement by means of selection for resistance is proposed as a viable alternative for control. Genomic information can be used to identify the genomic regions associated with resistance and enhance the genetic evaluation methods to speed up the genetic improvement for the trait. The objectives of this study were to i) identify the genomic regions associated with resistance toP. salmonis; and ii) identify candidate genes associated with the trait. We experimentally challenged 2,130 rainbow trout withP. salmonisand genotyped them with a 57 K SNP array. Resistance toP. salmoniswas defined as time to death (TD) and as binary survival (BS). Significant heritabilities were estimated for TD and BS (0.48 ± 0.04 and 0.34 ± 0.04, respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for samples and genotypes. Using a single-step genome wide association analysis (ssGWAS) we identified four genomic regions explaining over 1% of the genetic variance for TD and three for BS. Interestingly, the same genomic region located onOmy27was found to explain the highest proportion of genetic variance for both traits (2.4 and 1.5% for TD and BS, respectively). The identified SNP in this region is located within an exon of a gene related with actin cytoskeletal organization, a protein exploited byP. salmonisduring infection. Other important candidate genes identified are related with innate immune response and oxidative stress. The moderate heritability values estimated in the present study show it is possible to improve resistance toP. salmonisthrough artificial selection in the current rainbow trout population. Furthermore, our results suggest a polygenic genetic architecture and provide novel insights into the candidate genes underpinning resistance toP. salmonisinO. mykiss.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3