Static stability predicts the continuum of interleg coordination patterns in Drosophila

Author:

Szczecinski Nicholas S.ORCID,Bockemühl TillORCID,Chockley Alexander S.ORCID,Büschges AnsgarORCID

Abstract

AbstractDuring walking, insects must coordinate the movements of their six legs for efficient locomotion. This interleg coordination is speed-dependent; fast walking in insects is associated with tripod coordination patterns, while slow walking is associated with more variable, tetrapod-like patterns. To date, however, there has been no comprehensive explanation as to why these speed-dependent shifts in interleg coordination should occur in insects. Tripod coordination would be sufficient at low walking speeds. The fact that insects use a different interleg coordination pattern at lower speeds suggests that it is more optimal or advantageous at these speeds. Furthermore, previous studies focused on discrete tripod and tetrapod coordination patterns. Experimental data, however, suggest that changes observed in interleg coordination are part of a speed-dependent spectrum. Here, we explore these issues in relation to static stability as an important aspect of interleg coordination in Drosophila. We created a model that uses basic experimentally measured parameters in fruit flies to find the interleg phase relationships that maximize stability for a given walking speed. Based on this measure, the model predicted a continuum of interleg coordination patterns spanning the complete range of walking speeds. Furthermore, for low walking speeds the model predicted tetrapod-like patterns to be most stable, while at high walking speeds tripod coordination emerged as most optimal. Finally, we validated the basic assumption of a continuum of interleg coordination patterns in a large set of experimental data from walking fruit flies and compared these data with the model-based predictions.Summary statementA simple stability-based modelling approach can explain why walking insects use different leg coordination patterns in a speed-dependent way.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3