Testing for population decline using maximal linkage disequilibrium blocks

Author:

Kerdoncuff EliseORCID,Lambert AmauryORCID,Achaz GuillaumeORCID

Abstract

AbstractOnly 6% of known species have a conservation status. Methods that assess conservation statuses are often based on individual counts and are thus too laborious to be generalized to all species. Population genomics methods that infer past variations in population size are easy to use but limited to the relatively distant past. Here we propose a population genomics approach that tests for recent population decline and may be used to assess species conservation statuses. More specifically, we study Maximal Recombination Free (MRF) blocks, that are segments of a sequence alignment inherited from a common ancestor without recombination. MRF blocks are relatively longer in small than in large populations. We use the distribution of MRF block lengths rescaled by their mean to test for recent population decline. However, because MRF blocks are difficult to detect, we also consider Maximal Linkage Disequilibrium (MLD) blocks, which are runs of single nucleotide polymorphisms compatible with a single tree. We develop a new method capable of inferring a very recent decline (e.g. with a detection power of 50% for populations which size was halved toN, 0.05 ×Ngenerations ago) from rescaled MLD block lengths. Our framework could serve as a basis for quantitative tools to assess conservation status in a wide range of species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3