Expression of mammalian Onzin and Fungal Cadmium Resistance 1 in S. cerevisiae suggests ancestral functions of PLAC8 proteins in regulating mitochondrial metabolism and DNA damage repair

Author:

Daghino StefaniaORCID,Vietro Luigi DiORCID,Petiti LucaORCID,Martino ElenaORCID,Dallabona Cristina,Lodi Tiziana,Perotto Silvia

Abstract

AbstractProtein domains are structurally and functionally distinct units responsible for particular protein functions or interactions. Although protein domains contribute to the overall protein function(s) and can be used for protein classification, about 20% of protein domains are currently annotated as “domains of an unknown function” (DUFs). DUF 614, a cysteine-rich domain better known as PLAC8 (Placenta-Specific Gene 8), occurs in proteins found in the majority of Eukaryotes. PLAC8-containing proteins play important yet diverse roles in different organisms, such as control of cell proliferation in animals and plants or heavy metal resistance in plants and fungi. For example, Onzin from Mus musculus is a key regulator of cell proliferation, whereas FCR1 from the ascomycete Oidiodendron maius confers cadmium resistance. Onzin and FCR1 are small, single-domain PLAC8 proteins and we hypothesized that, despite their apparently different role, a common molecular function of these proteins may be linked to the PLAC8 domain. To address this hypothesis, we compared these two PLAC8-containing proteins by heterologous expression in the PLAC8-free yeast Saccharomyces cerevisiae. When expressed in yeast, both Onzin and FCR1 improved cadmium resistance, reduced cadmium-induced DNA mutagenesis, localized in the nucleus and induced similar transcriptional changes. Our results support the hypothesis of a common ancestral function of the PLAC8 domain that may link some mitochondrial biosynthetic pathways (i.e. leucine biosynthesis and Fe-S cluster biogenesis) with the control of DNA damage, thus opening new perspectives to understand the role of this protein domain in the cellular biology of Eukaryotes.Author SummaryProtein domains are the functional units of proteins and typically have distinct structure and function. However, many widely distributed protein domains are currently annotated as “domains of unknown function” (DUFs). We have focused on DUF 614, a protein domain found in many Eukaryotes and better known as PLAC8 (Placenta-Specific Gene 8). The functional role of DUF 614 is unclear because PLAC8 proteins seem to play important yet different roles in taxonomically distant organisms such as animals, plants and fungi. We used S. cerevisiae to test whether these apparently different functions, namely in cell proliferation and metal tolerance, respectively reported for the murine Onzin and the fungal FCR1, are mediated by the same molecular mechanisms. Our data demonstrate that the two PLAC8 proteins induced the same growth phenotype and transcriptional changes in S. cerevisiae. In particular, they both induced the biosynthesis of the amino acid leucine and of the iron-sulfur cluster, one of the most ancient protein cofactors. These similarities support the hypothesis of an ancestral function of the DUF 164 domain, whereas the transcriptomic data open new perspectives to understand the role of PLAC8-proteins in Eukaryotes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3