Author:
Jerison Elizabeth R.,Quake Stephen R.
Abstract
AbstractT cells in vivo migrate primarily via undirected random walks, but it remains unresolved how these random walks generate an efficient search. Here, we use light sheet microscopy of T cells in the larval zebrafish as a model system to study motility across large populations of cells over hours in their native context. We show that cell-to-cell variability is amplified by a correlation between speed and directional persistence, generating a characteristic cell behavioral manifold that is preserved under a perturbation to cell speeds, and seen in Mouse T cells and Dictyostelium. These results suggest that there is a single variable underlying ameboid cell motility that jointly controls speed and turning. This coupling explains behavioral heterogeneity in diverse systems and allows cells to access a broad range of length scales.
Publisher
Cold Spring Harbor Laboratory