A Fasciclin 2 functional switch controls organ size in Drosophila

Author:

Velasquez Emma,Gomez-Sanchez Jose A.,Donier Emmanuelle,Grijota-Martinez Carmen,Cabedo Hugo,Garcia-Alonso Luis

Abstract

How cell to cell interactions control local tissue growth to attain a species-specific pattern and organ size is a central question in developmental biology. The Drosophila Neural Cell Adhesion Molecule, Fasciclin 2 (Drosophila NCAM), is expressed during the development of neural and epithelial organs. Genetic mosaic analysis of Fasciclin 2 reveals two complementary and opposing functions during imaginal disc growth, a cell autonomous requirement to promote growth and an opposite non-cell autonomous function to restrain growth at high expression levels. This non-cell autonomous function is mediated by the Fasciclin 2 heterophilic-binding partners CG15630 and CG33543. We show that EGFR physically interacts with Fasciclin 2 and mediates both the cell autonomous and the non-cell autonomous function. We further show that EGFR activity in turn promotes the cell autonomous expression of Fasciclin 2. We suggest that the auto-stimulatory loop between EGFR and Fasciclin 2 operates until reaching a threshold where the Fasciclin 2 non-cell autonomous function counteracts the growth-promoting activity of the homophilic interaction to terminate imaginal disc growth. Accordingly, we have found that Fasciclin 2 limits imaginal disc growth by the end of larval development. Cellular integration of Fasciclin 2 autonomous and non-cell autonomous signaling from neighbor cells may be a key regulator component to orchestrate the rate of intercalary cell proliferation and the final size of an organ.Author SummaryOne of the key unsolved problems in Biology is how a species-specific size is attained during animal development. During development cells should compute the amount of intercalary tissue growth to stop cell proliferation when reaching a correct pattern and size. Classic studies demonstrated that local cell interactions are key in controlling organ growth to reach a correct size and pattern in vertebrates and invertebrates. We present evidence strongly suggesting that Fasciclin 2 (the ortholog of NCAM in Drosophila) functions as a growth level switch to control pattern and organ size. First, we use genetic mosaic analyses to show that Fasciclin 2 promotes organ growth in a cell autonomous manner. Then we show that Fasciclin 2 restrains growth at high expression levels in a non-cell autonomous manner, and that there is a requirement for Fasciclin 2 to limit growth by the end of larval development. This function is dependent on Fasciclin 2 heterophilic binding partners CG15630 and CG33543. The Epidermal Growth Factor receptor mediates both functional facets of Fasciclin 2 and its activity in turn increases Fasciclin 2 cell autonomous expression, suggesting the existence of a functional auto-stimulatory loop. We also show that the Epidermal Growth Factor receptor and Fasciclin 2 physically interact. Our results show that the amount of Fasciclin 2 between cells determines organ size by acting as an expression level switch for EGFR function, and suggest that other specific CAM interactions may integrate similar expression level switches acting as a code for cells to compute local growth in attaining a species-specific organ size and shape.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3