Intra- and inter-individual metabolic profiling highlights carnitine and lysophosphatidylcholine pathways as key molecular defects in type-2 diabetes

Author:

Diamanti KlevORCID,Cavalli Marco,Pan Gang,Pereira Maria J,Kumar Chanchal,Skrtic Stanko,Grabherr Manfred,Risérus Ulf,Eriksson Jan W,Komorowski JanORCID,Wadelius ClaesORCID

Abstract

ABSTRACTType-2 diabetes (T2D) mellitus is a complex metabolic disease commonly caused by insulin resistance in several tissues. We performed a matched two-dimensional metabolic screening in tissue samples from a cohort of 43 multi-organ donors. The intra-individual analysis was assessed across five key-metabolic tissues (serum, adipose tissue, liver, pancreatic islets and muscle), and the inter-individual across three different groups reflecting T2D progression. We identified 92 metabolites differing significantly between non-diabetes and T2D subjects. Carnitines were significantly higher in liver, while lysophosphatidylcholines significantly lower in muscle and serum. An investigation of the progression to overt T2D showed that deoxycholic acid glycine conjugate was significantly higher in liver of pre-diabetes samples while additional increase in T2D was insignificant. A subset of lysophosphatidylcholines were significantly lower in the muscle of pre-diabetes subjects. Overall, the analysis of this unique dataset can increase the understanding of the metabolic interplay between organs in the development of T2D.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3