Abstract
ABSTRACTWe report the use of reconstituted 3D-human airway epithelium cells of bronchial origin (HuAEC) in an air-liquid interface to study respiratory syncytial virus (RSV) infection and to assess the efficacy of RSV inhibitors in (pre-)clinical development. RSV-A replicates efficiently in HuAEC and viral RNA is shed for weeks after infection. RSV infection reduces the ciliary beat frequency of the ciliated cells as of 4 days post infection, with complete ciliary dyskinesia observed by day 10. Treatment with RSV fusion inhibitors resulted in an antiviral effect only when added at the time of infection. In contrast, the use of replication inhibitors (both nucleoside and non-nucleosides) elicited a marked antiviral effect even when start of treatment was delayed until one or even three days after infection. Levels of the inflammation marker RANTES (mRNA) increased ∼200-fold in infected-untreated cultures (at three weeks post infection), but levels were comparable to those of uninfected cultures in the presence of PC-876, a RSV-replication inhibitor, demonstrating that an efficient antiviral treatment inhibits virus induced inflammation in this model. Overall, HuAEC offer a robust and physiologically relevant model to study RSV replication and to assess the efficacy of antiviral compounds.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献