Author:
Gregor Tomas,Bosakova Michaela Kunova,Nita Alexandru,Abraham Sara P.,Fafilek Bohumil,Cernohorsky Nicole H.,Rynes Jan,Foldynova-Trantirkova Silvie,Mayer Jiri,Trantirek Lukas,Krejci Pavel
Abstract
AbstractApproximately 50% of chronic myeloid leukemia (CML) patients in deep remission experience a return of clinical CML after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR-ABL, which allows for survival of cancer cells, leading to relapse. Understanding the dynamics of BCR-ABL signaling complex holds a key to the mechanism of BCR-ABL signaling. Here, we demonstrate that TKIs inhibit catalytic activity of BCR-ABL, but do not dissolve the BCR-ABL core signaling complex consisting of CrkL, SHC1, Grb2, SOS1, cCbl, and SHIP2. We show that CrkL binds to proline-rich regions located in C-terminal, intrinsically disordered region of BCR-ABL, that deletion of pleckstrin homology domain of BCR-ABL diminishes interaction with SHC1, and that BCR-ABL sequence motif located in disordered region around phosphorylated tyrosine 177 mediates binding of at least three core complex members, the Grb2, SOS1 and cCbl. Introduction of Y177F substitution blocks association with Grb2, SOS1 and cCbl. Further, we identified SHIP2 binding sites within the src-homology and tyrosine kinase domains of BCR-ABL. We found that BCR-ABL is unable to phosphorylate SHC1 in cells lacking SHIP2. Reintroducing SHIP2 into Ship2 knock-out cells restored SHC1 phosphorylation, which depended on inositol phosphatase activity of SHIP2. Our findings provide characterization of protein-protein interactions in the BCR-ABL signaling complex, and support the concept of targeting BCR-ABL signaling in CML by inhibition of its interactions with the members of the core complex.
Publisher
Cold Spring Harbor Laboratory