Conformational Flexibility of p150Glued(1-191) Subunit of Dynactin Assembled with Microtubules

Author:

Guo C.ORCID,Williams J. C.,Polenova T.ORCID

Abstract

ABSTRACTMicrotubule-associated proteins (MAPs) perform diverse functions in cells. These functions are dependent on their interactions with microtubules. Dynactin, a cofactor of dynein motor, assists the binding of dynein to various organelles and is crucial to the long-distance processivity of dynein-based complexes. The largest subunit of dynactin, the p150glued, contains a N-terminus segment that is responsible for the microtubule-binding interactions and long-range processivity of dynactin. We employed solution and magic angle spinning NMR spectroscopy to characterize the structure and dynamics of the p150glued N-terminal region, both free and in complex with polymerized microtubules. This 191-residue region encompasses the CAP-Gly domain, the basic domain and serine-proline-rich (SP-rich) domain. We demonstrate that the basic and SP-rich domains are intrinsically disordered in solution and significantly enhance the binding affinity to microtubules as these regions contain the second microtubule-binding site on the p150Glued subunit. The majority of the basic and SP-rich domains are predicted to be random-coil, while the segments S111–I116, A124–R132 and K144–T146 in the basic domain contain short α-helical or β-sheet structures. These three segments possibly encompass the microtubule binding site. Surprisingly, the protein retains high degree of flexibility upon binding to microtubules except for the regions that are directly involved in the binding interactions with microtubules. This conformational flexibility may be essential for the biological functions of the p150Glued subunit.STATEMENT OF SIGNIFICANCEMicrotubule-associated proteins (MAPs) perform diverse functions in cells. Many of them comprises intrinsically disordered regions, whose structural flexibility are central to microtubule-based cellular functions of MAPs. We employed solution and magic angle spinning NMR spectroscopy to characterize the structure and dynamics of the p150glued N-terminal region encompassing the CAP-Gly domain, the basic domain and serine-proline-rich (SP-rich) domain, both free and in complex with polymerized microtubules. The results reveal that the basic and SP-rich domains are largely unstructured and retains high degree of flexibility upon binding to microtubules except for the regions that are possibly involved in the binding interactions with microtubules. This approach is informative for dynamics studies of intrinsically disordered MAPs and other disordered proteins in large biological assemblies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3