CoPhosK: A Method for Comprehensive Kinase Substrate Annotation Using Co-phosphorylation Analysis

Author:

Ayati Marzieh,Wiredja Danica,Schlatzer Daniela,Maxwell Sean,Li Ming,Koyutürk Mehmet,Chance Mark R.

Abstract

AbstractWe present CoPhosK to predict kinase-substrate associations for phosphopeptide substrates detected by mass spectrometry (MS). The tool utilizes a Naïve Bayes framework with priors of known kinase-substrate associations (KSAs) to generate its predictions. Through the mining of MS data for the collective dynamic signatures of the kinases’ substrates revealed by correlation analysis of phosphopeptide intensity data, the tool infers KSAs in the data for the considerable body of substrates lacking such annotations. We benchmarked the tool against existing approaches for predicting KSAs that rely on static information (e.g. sequences, structures and interactions) using publically available MS data, including breast, colon, and ovarian cancer models. The benchmarking reveals that co-phosphorylation analysis can significantly improve prediction performance when static information is available (about 35% of sites) while providing reliable predictions for the remainder, thus tripling the KSAs available from the experimental MS data providing a to comprehensive and reliable characterization of the landscape of kinase-substrate interactions well beyond current limitations.Author SummaryKinases play an important role in cellular regulation and have emerged as an important class of drug targets for many diseases, particularly cancers. Comprehensive identification of the links between kinases and their substrates enhances our ability to understand the underlying mechanism of diseases and signalling networks to drive drug discovery. Most of the current computational methods for prediction of kinase-substrate associations use static information such as sequence motifs and physical interactions to generate predictions. However, phosphorylation is a dynamic process and these static predictions may overlook unique features of cellular context, where kinases may be rewired. In this manuscript, we propose a computational method, CoPhosK, which uses the mass spectrometry based phosphoproteomics data to predict the kinase for all identified phosphosites in the experiment. We show that our approach complements and extends existing approaches.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. A tissue-specific atlas of mouse protein phosphorylation and expression;Cell,2010

2. Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology;Journal of proteome research,2010

3. Profiling the kinome: current capabilities and future challenges;Journal of proteomics,2013

4. Identifying kinase substrates via a heavy ATP kinase assay and quantitative mass spectrometry;Scientific reports,2016

5. Phospho. ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins;BMC bioinformatics,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3