Multiplex in situ hybridization within a single transcript: RNAscope reveals dystrophin mRNA dynamics

Author:

Hildyard J.C.W.ORCID,Rawson F.,Wells D.J.ORCID,Piercy R.J.

Abstract

AbstractDystrophin plays a vital role in maintaining muscle health, yet low mRNA expression, lengthy transcription time and the limitations of traditional in-situ hybridization (ISH) methodologies mean that the dynamics of dystrophin transcription remain poorly understood. RNAscope is highly sensitive ISH method that can be multiplexed, allowing detection of individual transcripts at sub-cellular resolution, with different target mRNAs assigned to distinct fluorophores. We present a novel approach, instead using RNAscope probes targeted to 5’ and 3’ regions of the same transcript: labelling muscle dystrophin mRNA in this manner allows transcriptional dynamics to be deciphered in health and disease, resolving both nascent myonuclear transcripts and exported mature mRNAs (the latter absent in dystrophic muscle, yet restored following therapeutic intervention). We show that even in healthy muscle, immature dystrophin mRNA predominates (60-80% of total), with the surprising implication that the half-life of a mature transcript is markedly shorter than the time invested in transcription: at the transcript level, supply may exceed demand. Our findings provide unique spatiotemporal insight into the behaviour of this long transcript (with implications for therapeutic approaches), and further suggests this modified multiplex ISH approach is well-suited to long genes, offering a highly tractable means to reveal complex transcriptional dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3