Looking for a reference for large datasets: relative reliability of visual and automatic sleep scoring

Author:

Berthomier C.,Muto V.,Schmidt C.,Vandewalle G.,Jaspar M.,Devillers J.,Gaggioni G.,Chellappa S. L.,Meyer C.,Phillips C.,Salmon E.,Berthomier P.,Prado J.,Benoit O.,Brandewinder M.,Mattout J.,Maquet J.

Abstract

AbstractStudy ObjectivesNew challenges in sleep science require to describe fine grain phenomena or to deal with large datasets. Beside the human resource challenge of scoring huge datasets, the inter- and intra-expert variability may also reduce the sensitivity of such studies. Searching for a way to disentangle the variability induced by the scoring method from the actual variability in the data, visual and automatic sleep scorings of healthy individuals were examined.MethodsA first dataset (DS1, 4 recordings) scored by 6 experts plus an autoscoring algorithm was used to characterize inter-scoring variability. A second dataset (DS2, 88 recordings) scored a few weeks later was used to investigate intra-expert variability. Percentage agreements and Conger’s kappa were derived from epoch-by-epoch comparisons on pairwise, consensus and majority scorings.ResultsOn DS1 the number of epochs of agreement decreased when the number of expert increased, in both majority and consensus scoring, where agreement ranged from 86% (pairwise) to 69% (all experts). Adding autoscoring to visual scorings changed the kappa value from 0.81 to 0.79. Agreement between expert consensus and autoscoring was 93%. On DS2 intra-expert variability was evidenced by the kappa systematic decrease between autoscoring and each single expert between datasets (0.75 to 0.70).ConclusionsVisual scoring induces inter- and intra-expert variability, which is difficult to address especially in big data studies. When proven to be reliable and if perfectly reproducible, autoscoring methods can cope with intra-scorer variability making them a sensible option when dealing with large datasets.Statement of SignificanceWe confirmed and extended previous findings highlighting the intra- and inter-expert variability in visual sleep scoring. On large datasets those variability issues cannot be completely addressed by neither practical nor statistical solutions such as group training, majority or consensus scoring.When an automated scoring method can be proven to be as reasonably imperfect as visual scoring but perfectly reproducible, it can serve as a reliable scoring reference for sleep studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3