Author:
Suzuki Miho M.,Kerr Alastair R.W.,De Sousa Dina,Bird Adrian
Abstract
DNA is methylated at the dinucleotide CpG in genomes of a wide range of plants and animals. Among animals, variable patterns of genomic CpG methylation have been described, ranging from undetectable levels (e.g., in Caenorhabditis elegans) to high levels of global methylation in the vertebrates. The most frequent pattern in invertebrate animals, however, is mosaic methylation, comprising domains of methylated DNA interspersed with unmethylated domains. To understand the origin of mosaic DNA methylation patterns, we examined the distribution of DNA methylation in the Ciona intestinalis genome. Bisulfite sequencing and computational analysis revealed methylated domains with sharp boundaries that strongly colocalize with ∼60% of transcription units. By contrast, promoters, intergenic DNA, and transposons are not preferentially targeted by DNA methylation. Methylated transcription units include evolutionarily conserved genes, whereas the most highly expressed genes preferentially belong to the unmethylated fraction. The results lend support to the hypothesis that CpG methylation functions to suppress spurious transcriptional initiation within infrequently transcribed genes.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
201 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献