Producing Hfq/Sm Proteins and sRNAs for Structural and Biophysical Studies of Ribonucleoprotein Assembly

Author:

Stanek Kimberly A.ORCID,Mura CameronORCID

Abstract

AbstractHfq is a bacterial RNA-binding protein that plays key roles in the post–transcriptional regulation of gene expression. Like other Sm proteins, Hfq assembles into toroidal discs that bind RNAs with varying affinities and degrees of sequence specificity. By simultaneously binding to a regulatory small RNA (sRNA) and an mRNA target, Hfq hexamers facilitate productive RNA⋯RNA interactions; the generic nature of this chaperone-like functionality makes Hfq a hub in many sRNA-based regulatory networks. That Hfq is crucial in diverse cellular pathways—including stress response, quorum sensing and biofilm formation— has motivated genetic and ‘RNAomic’ studies of its function and physiology (in vivo), as well as biochemical and structural analyses of Hfq⋯RNA interactions (in vitro). Indeed, crystallographic and bio-physical studies first established Hfq as a member of the phylogenetically-conserved Sm superfamily. Crystallography and other biophysical methodologies enable the RNA-binding properties of Hfq to be elucidated in atomic detail, but such approaches have stringent sample requirements, viz.: reconstituting and characterizing an Hfq•RNA complex requires ample quantities of well-behaved (sufficient purity, homogeneity) specimens of Hfq and RNA (sRNA, mRNA fragments, short oligoribonucleotides, or even single nucleotides). The production of such materials is covered in this Chapter, with a particular focus on recombinant Hfq proteins for crystallization experiments.Abbreviations3Dthree-dimensionalAUasymmetric unitCVcolumn volumeDEPCdiethyl pyrocarbonateHDVhepatitis δ virusHDVDhanging-drop vapor diffusionIMACimmobilized metal affinity chromatographyMWmolecular weightMWCOmolecular weight cut-offntnucleotidePDBProtein Data BankRNPribonucleoproteinRTroom temperatureSDVDsitting-drop vapor diffusionJournal formatMethods in Molecular Biology (Springer Protocols series); this volume is entitled “Bacterial Regulatory RNA: Methods and Protocols”; an author guide is linked at http://www.springer.com/series/7651

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3