Comparative Genomic Hybridization Provides New Insights Into the Molecular Taxonomy of the Saccharomyces Sensu Stricto Complex

Author:

Edwards-Ingram Laura C.,Gent Manda E.,Hoyle David C.,Hayes Andrew,Stateva Lubomira I.,Oliver Stephen G.

Abstract

The science of taxonomy is constantly improving as new techniques are developed. Current practice is to construct phylogenetic trees based on the analysis of the DNA sequence of single genes, or parts of single genes. However, this approach has recently been brought into question as several tree topologies may be produced for the same clade when the sequences for various different genes are used. The availability of complete genome sequences for several organisms has seen the adoption of microarray technology to construct molecular phylogenies of bacteria, based on all of the genes. Similar techniques have been used to reveal the relationships between different strains of the yeast Saccharomyces cerevisiae. We have exploited microarray technology to construct a molecular phylogeny for the Saccharomyces sensu stricto complex of yeast species, which is based on all of the protein-encoding genes revealed by the complete genome sequence of the paradigmatic species, S. cerevisiae. We also analyze different strains of S. cerevisiae itself, as well as the putative species S. boulardii. We show that in addition to the phylogeny produced, we can identify and analyze individual ORF traits and interpret the results to give a detailed explanation of evolutionary events underlying the phylogeny.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

Reference62 articles.

1. Adams, A., Gottschling, D.E., Kaiser, C.A., and Stearns, T. 1997. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

2. Yeast: an Experimental Organism for Modern Biology

3. Brown, T.A. 2002. Genomes. BIOS Scientific Publishers, New York.

4. Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting

5. Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3