WhichTF is dominant in your open chromatin data?

Author:

Tanigawa YosukeORCID,Dyer Ethan S.,Bejerano GillORCID

Abstract

AbstractWe present WhichTF, a novel computational method to identify dominant transcription factors (TFs) from chromatin accessibility measurements. To rank TFs, WhichTF integrates high-confidence genome-wide computational prediction of TF binding sites based on evolutionary sequence conservation, putative gene-regulatory models, and ontology-based gene annotations. Applying WhichTF, we find that the identified dominant TFs have been implicated as functionally important in well-studied cell types, such as NF-κB family members in lymphocytes and GATA factors in cardiac tissue. To distinguish the transcriptional regulatory landscape in closely related samples, we devise a differential analysis framework and demonstrate its utility in lymphocyte, mesoderm developmental, and disease cells. We also find TFs known for stress response in multiple samples, suggesting routine experimental caveats that warrant careful consideration. WhichTF yields biological insight into known and novel molecular mechanisms of TF-mediated transcriptional regulation in diverse contexts, including human and mouse cell types, cell fate trajectories, and disease-associated tissues.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3