High GC Content Causes Orphan Proteins to be Intrinsically Disordered

Author:

Basile Walter,Sachenkova Oxana,Light Sara,Elofsson ArneORCID

Abstract

AbstractDe novo creation of protein coding genes involves the formation of short ORFs from noncoding regions; some of these ORFs might then become fixed in the populationThese orphan proteins need to, at the bare minimum, not cause serious harm to the organism, meaning that they should for instance not aggregate. Therefore, although the creation of short ORFs could be truly random, the fixation should be subjected to some selective pressure. The selective forces acting on orphan proteins have been elusive, and contradictory results have been reported. In Drosophila young proteins are more disordered than ancient ones, while the opposite trend is present in yeast. To the best of our knowledge no valid explanation for this difference has been proposed.To solve this riddle we studied structural properties and age of proteins in 187 eukaryotic organisms. We find that, with the exception of length, there are only small differences in the properties between proteins of different ages. However, when we take the GC content into account we noted that it could explain the opposite trends observed for orphans in yeast (low GC) and Drosophila (high GC). GC content is correlated with codons coding for disorder promoting amino acids. This leads us to propose that intrinsic disorder is not a strong determining factor for fixation of orphan proteins. Instead these proteins largely resemble random proteins given a particular GC level. During evolution the properties of a protein change faster than the GC level causing the relationship between disorder and GC to gradually weaken.Author SummaryWe show that the GC content of a genome is of great importance for the properties of an orphan protein. GC content affects the frequency of the codons and this affects the probability for each amino acid to be included in a de novo created protein. The codons encoding for Ala, Pro and Gly contain 80% GC, while codons for Lys, Phe, Asn, Tyr and Ile contain 20% or less. The three high GC amino acids are all disorder promoting, while Phe, Tyr and Ile are order promoting. Therefore, random protein sequences at a high GC will be more disordered than the ones created at a low GC. The structural properties of the youngest proteins match to a large degree the properties of random proteins when the GC content is taken into account. In contrast, structural properties of ancient proteins only show a weak correlation with GC content. This suggests that even after fixation in the population, proteins largely resemble random proteins given a certain GC content. Thereafter, during evolution the correlation between structural properties and GC weakens.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3