Single cell analysis of lincRNA expression during human blastocyst differentiation identifies TERT(+) multi-lineage precursor cells

Author:

Durruthy-Durruthy Jens,Wossidlo Mark,Sebastiano Vittorio,Glinsky Gennadi

Abstract

SummaryChromosome instability and aneuploidies occur very frequently in human embryos, impairing proper embryogenesis and leading to cell cycle arrest, loss of cell viability, and developmental failures in 50-80% of cleavage-stage embryos. This high frequency of cellular extinction events represents a significant experimental obstacle challenging analyses of individual cells isolated from human preimplantation embryos. Here, we carried out single cell expression profiling analyses of 241 individual cells recovered from 32 human embryos during the early and late stages of viable human blastocyst differentiation. Classification of embryonic cells was performed solely based on expression patterns of human pluripotency-associated transcripts (HPAT), which represent a family of transposable element-derived lincRNAs highly expressed in human embryonic stem cells (hESCs) and regulating nuclear reprogramming and pluripotency induction. We then validated our findings by analyzing 1,708 individual embryonic cells recovered from more than 100 human embryos and 259 mouse embryonic cells at different stages of preimplantation embryogenesis. Our experiments demonstrate that segregation of human blastocyst cells into distinct sub-populations based on single-cell expression profiling of just three HPATs (HPAT-21; -2; and -15) appears to inform key molecular and cellular events of naïve pluripotency induction and accurately captures a full spectrum of cellular diversity during human blastocyst differentiation. HPAT’s expression-guided spatiotemporal reconstruction of human embryonic development inferred from single-cell expression analysis of viable blastocyst differentiation enabled identification of TERT(+) sub-populations, which are significantly enriched for cells expressing key naïve pluripotency regulatory genes and genetic markers of all three major lineages created during human blastocyst differentiation. Results of our analyses suggest that during early stages of preimplantation embryogenesis putative immortal multi-lineage precursor cells (iMPCs) are created, which then differentiate into trophectoderm, primitive endoderm and pluripotent epiblast lineages. We propose that cellular extinction events in cleavage-stage embryos are triggered by premature activation of HPAT lincRNAs reflecting failed iMPC’s creation attempts.HighlightsSingle cell analysis of 1,949 human & 259 mouse embryonic cellsIdentification of 5 most abundant HPAT lincRNAs in viable human blastocystsExpression profiling of just 3 lincRNAs captures cellular diversity of human blastocystsIdentification & characterization of TERT(+) multi-lineage precursor cellsMTTH/HPAT lincRNAs regulatory axis of naïve pluripotency induction in vivo

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3