Identifying Novel Targets by using Drug-binding Site Signature: A Case Study of Kinase Inhibitors

Author:

Naveed Hammad,Reglin Corinna,Schubert Thomas,Gao Xin,Arold Stefan T.,Maitland Michael L.

Abstract

AbstractCurrent FDA-approved kinase inhibitors cause diverse adverse effects, some of which are due to the mechanism-independent effects of these drugs. Identifying these mechanism-independent interactions could improve drug safety and support drug repurposing. We have developed “iDTPnd”, a computational approach for large-scale discovery of novel targets for known drugs. For a given drug, we construct a positive and a negative structural signature that captures the weakly conserved structural features of drug binding sites. To facilitate assessment of unintended targets iDTPnd also provides a docking-based interaction score and its statistical significance. We were able to confirm the interaction of sorafenib, imatinib, dasatinib, sunitinib, and pazopanib with their known targets at a sensitivity and specificity of 52% and 55% respectively. We have validated 10 predicted novel targets, using in vitro experiments. Our results suggest that proteins other than kinases, such as nuclear receptors, cytochrome P450 or MHC Class I molecules can also be physiologically relevant targets of kinase inhibitors. Our method is general and broadly applicable for the identification of protein-small molecule interactions, when sufficient drug-target 3D data are available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3