Abstract
AbstractShigellaspecies are specialised lineages ofEscherichia colithat have converged to become human-adapted and cause dysentery by invading human gut epithelial cells. Most studies ofShigellaevolution have been restricted to comparisons of single representatives of each species; and population genomic studies of individualShigellaspecies have focused on genomic variation caused by single nucleotide variants and ignored the contribution of insertion sequences (IS) which are highly prevalent inShigellagenomes. Here, we investigate the distribution and evolutionary dynamics of IS within populations ofShigella dysenteriaeSd1,Shigella sonneiandShigella flexneri. We find that five IS (IS1, IS2, IS4, IS600and IS911) have undergone expansion in allShigellaspecies, creating substantial strain-to-strain variation within each population and contributing to convergent patterns of functional gene loss within and between species. We find that IS expansion and genome degradation are most advanced inS. dysenteriaeand least advanced inS. sonnei; and using genome-scale models of metabolism we show thatShigellaspecies display convergent loss of coreE. colimetabolic capabilities, withS. sonneiandS. flexnerifollowing a similar trajectory of metabolic streamlining to that ofS. dysenteriae. This study highlights the importance of IS to the evolution ofShigellaand provides a framework for the investigation of IS dynamics and metabolic reduction in other bacterial species.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献