Author:
Eaton Joshua D.,Francis Laura,Davidson Lee,West Steven
Abstract
The allosteric and torpedo models have been used for 30 yr to explain how transcription terminates on protein-coding genes. The former invokes termination via conformational changes in the transcription complex and the latter proposes that degradation of the downstream product of poly(A) signal (PAS) processing is important. Here, we describe a single mechanism incorporating features of both models. We show that termination is completely abolished by rapid elimination of CPSF73, which causes very extensive transcriptional readthrough genome-wide. This is because CPSF73 functions upstream of modifications to the elongation complex and provides an entry site for the XRN2 torpedo. Rapid depletion of XRN2 enriches these events that we show are underpinned by protein phosphatase 1 (PP1) activity, the inhibition of which extends readthrough in the absence of XRN2. Our results suggest a combined allosteric/torpedo mechanism, in which PP1-dependent slowing down of polymerases over termination regions facilitates their pursuit/capture by XRN2 following PAS processing.
Funder
Wellcome Trust
Lister Institute Research Fellowship
Medical Research Council Clinical Infrastructure Award
Wellcome Trust Institutional Strategic Support Fund
Wellcome Trust Multi User Equipment Award
Biotechnology and Biological Sciences Research Council Longer and Larger Award
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献