G2P: Using machine learning to understand and predict genes causing rare neurological disorders

Author:

Botía Juan A.,Guelfi Sebastian,Zhang David,D’Sa Karishma,Reynolds Regina,Onah Daniel,McDonagh Ellen M.,Martin Antonio Rueda,Tucci Arianna,Rendon Augusto,Houlden Henry,Hardy John,Ryten Mina

Abstract

AbstractTo facilitate precision medicine and neuroscience research, we developed a machine-learning technique that scores the likelihood that a gene, when mutated, will cause a neurological phenotype. We analysed 1126 genes relating to 25 subtypes of Mendelian neurological disease defined by Genomics England (March 2017) together with 154 gene-specific features capturing genetic variation, gene structure and tissue-specific expression and co-expression. We randomly re-sampled genes with no known disease association to develop bootstrapped decision-tree models, which were integrated to generate a decision tree-based ensemble for each disease subtype. Genes generating larger numbers of distinct transcripts and with higher probability of having missense mutations in normal individuals were significantly more likely to cause neurological diseases. Using mouse-mutant phenotypic data we tested the accuracy of gene-phenotype predictions and found that for 88% of all disease subtypes there was a significant enrichment of relevant phenotypic abnormalities when predicted genes were mutated in mice and in many cases mutations produced specific and matching phenotypes. Furthermore, using only newly identified genes included in the Genomics England November 2017 release, we assessed our gene-phenotype predictions and showed an 8.3 fold enrichment relative to chance for correct predictions. Thus, we demonstrate both the explanatory and predictive power of machine-learning-based models in neurological disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3