Quantitative Colour Pattern Analysis (QCPA): A Comprehensive Framework for the Analysis of Colour Patterns in Nature

Author:

van den Berg Cedric P.ORCID,Troscianko JolyonORCID,Endler John A.ORCID,Marshall N. JustinORCID,Cheney Karen L.ORCID

Abstract

AbstractTo understand the function of colour signals in nature, we require robust quantitative analytical frameworks to enable us to estimate how animal and plant colour patterns appear against their natural background as viewed by ecologically relevant species. Due to the quantitative limitations of existing methods, colour and pattern are rarely analysed in conjunction with one another, despite a large body of literature and decades of research on the importance of spatiochromatic colour pattern analyses. Furthermore, key physiological limitations of animal visual systems such as spatial acuity, spectral sensitivities, photoreceptor abundances and receptor noise levels are rarely considered together in colour pattern analyses.Here, we present a novel analytical framework, called the ‘Quantitative Colour Pattern Analysis’ (QCPA). We have overcome many quantitative and qualitative limitations of existing colour pattern analyses by combining calibrated digital photography and visual modelling. We have integrated and updated existing spatiochromatic colour pattern analyses, including adjacency, visual contrast and boundary strength analysis, to be implemented using calibrated digital photography through the ‘Multispectral Image Analysis and Calibration’ (MICA) Toolbox.This combination of calibrated photography and spatiochromatic colour pattern analyses is enabled by the inclusion of psychophysical colour and luminance discrimination thresholds for image segmentation, which we call ‘Receptor Noise Limited Clustering’, used here for the first time. Furthermore, QCPA provides a novel psycho-physiological approach to the modelling of spatial acuity using convolution in the spatial or frequency domains, followed by ‘Receptor Noise Limited Ranked Filtering’ to eliminate intermediate edge artefacts and recover sharp boundaries following smoothing. We also present a new type of colour pattern analysis, the ‘Local Edge Intensity Analysis’ (LEIA) as well as a range of novel psycho-physiological approaches to the visualisation of spatiochromatic data.QCPA combines novel and existing pattern analysis frameworks into what we hope is a unified, user-friendly, free and open source toolbox and introduce a range of novel analytical and data-visualisation approaches. These analyses and tools have been seamlessly integrated into the MICA toolbox providing a dynamic and user-friendly workflow.QCPA is a framework for the empirical investigation of key theories underlying the design, function and evolution of colour patterns in nature. We believe that it is compatible with, but more thorough than, other existing colour pattern analyses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3