PBAF loss leads to DNA damage-induced inflammatory signaling through defective G2/M checkpoint maintenance

Author:

Feng Hugang,Lane Karen A.,Roumeliotis Theodoros I.,Jeggo Penny A.,Somaiah Navita,Choudhary Jyoti S.,Downs Jessica A.ORCID

Abstract

The PBRM1 subunit of the PBAF (SWI/SNF) chromatin remodeling complex is mutated in ∼40% of clear cell renal cancers. PBRM1 loss has been implicated in responses to immunotherapy in renal cancer, but the mechanism is unclear. DNA damage-induced inflammatory signaling is an important factor determining immunotherapy response. This response is kept in check by the G2/M checkpoint, which prevents progression through mitosis with unrepaired damage. We found that in the absence of PBRM1, p53-dependent p21 up-regulation is delayed after DNA damage, leading to defective transcriptional repression by the DREAM complex and premature entry into mitosis. Consequently, DNA damage-induced inflammatory signaling pathways are activated by cytosolic DNA. Notably, p53 is infrequently mutated in renal cancer, so PBRM1 mutational status is critical to G2/M checkpoint maintenance. Moreover, we found that the ability of PBRM1 deficiency to predict response to immunotherapy correlates with expression of the cytosolic DNA-sensing pathway in clinical samples. These findings have implications for therapeutic responses in renal cancer.

Funder

Cancer Research UK

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3