In-Cell Structural Dynamics of an EGF Receptor during Ligand-induced Dimer-Oligomer Transition

Author:

Kozer N.,Clayton A. H.A.

Abstract

AbstractThe epidermal growth factor receptor (EGFR) is a membrane protein that regulates cell proliferation, differentiation and survival, and is a drug target for cancer therapy. Ligand-induced activation of the EGFR kinase is generally regarded to require ligand-bound-dimers, while phosphorylation and downstream signalling is modulated by higher-order oligomers. Recent work has unveiled changes in EGFR dynamics from ligand-induced dimerization in membranes extracted from cells, however less is known about the changes in EGFR dynamics that accompany the ligand-induced dimer to tetramer transition in a live cell environment. In the present report, we determine the dynamics of a c-terminal GFP tag attached to EGFR in the unliganded dimer and in the liganded tetramer by means of dynamic depolarization microscopy. We made use of a novel analysis method, the single-frequency polarized phasor ellipse approach, to extract two correlation times on the subnanosecond and super-nanosecond timescales, respectively. EGF binding to the EGFR-GFP dimer lengthened the sub-nanosecond correlation time (from 0.1ns to 1.3ns), and shortened the supernanosecond correlation time (from 210ns to 56ns) of the c-terminal GFP probe. The sub-nanosecond depolarization processes were assigned to electronic energy migration between proximal GFPs in the EGFR dimer or oligomer, while the super-nanosecond correlation times were assigned to nanosecond fluctuations of the GFP probe in the EGFR complex. Accordingly, these results show that ligand binding to the extracellular domain increased the average separation between the c-terminal tags and increased their rotational mobility. We propose that the dynamics are linked to an inhibitory function of the c-terminal tail in the un-liganded dimer and to the requirement of facile stochastic switching between kinase activation and cytoplasmic adaptor/effector binding in the active tetramer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3