Abstract
AbstractMotivationDetection of copy number alterations (CNA) is critical to understand genetic diversity, genome evolution and pathological conditions such as cancer. Cancer genomes are plagued with widespread multi-level structural aberrations of chromosomes that pose challenges to discover CNAs of different length scales with distinct biological origin and function. Although several tools are available to identify CNAs using read depth (RD) of coverage, they fail to distinguish between large-scale and focal alterations due to inaccurate modeling of the RD signal of cancer genomes. These tools are also affected by RD signal variations, pronounced in low-coverage data, which significantly inflate false detection of change points and inaccurate CNA calling.ResultsWe have developed CNAtra to hierarchically discover and classify ‘large-scale’ and ‘focal’ copy number gain/loss from whole-genome sequencing (WGS) data. CNAtra provides an analytical and visualization framework for CNV profiling using single sequencing sample. CNAtra first utilizes multimodal distribution to estimate the copy number (CN) reference from the complex RD profile of the cancer genome. We utilized Savitzy-Golay filter and Modified Varri segmentation to capture the change points. We then developed a CN state-driven merging algorithm to identify the large segments with distinct copy number. Next, focal alterations were identified in each large segment using coverage-based thresholding to mitigate the adverse effects of signal variations. We tested CNAtra calls using experimentally verified segmental aneuploidies and focal alterations which confirmed CNAtra’s ability to detect and distinguish the two alteration phenomena. We used realistic simulated data for benchmarking the performance of CNAtra against other detection tools where we artificially spiked-in CNAs in the original cancer profiles. We found that CNAtra is superior in terms of precision, recall, and f-measure. CNAtra shows the highest sensitivity of 93% and 97% for detecting focal and large-scale alterations respectively. Visual inspection of CNAs showed that CNAtra is the most robust detection tool for low-coverage cancer data.Availability and implementationCNAtra is an open source software implemented in MATLAB, and is available at https://github.com/AISKhalil/CNAtra
Publisher
Cold Spring Harbor Laboratory