Modeling motor-evoked potentials from neural field simulations of transcranial magnetic stimulation

Author:

Wilson Marcus TORCID,Moezzi BaharORCID,Rogasch Nigel CORCID

Abstract

AbstractObjectiveTo develop a population-based biophysical model of motor-evoked potentials (MEPs) following transcranial magnetic stimulation (TMS).MethodsWe combined an existing MEP model with population-based cortical modeling. Layer 2/3 excitatory and inhibitory neural populations, modeled with neural-field theory, are stimulated with TMS and feed layer 5 corticospinal neurons, which also couple directly but weakly to the TMS pulse. The layer 5 output controls mean motoneuron responses, which generate a series of single motor-unit action potentials that are summed to estimate a MEP.ResultsA MEP waveform was generated comparable to those observed experimentally. The model captured TMS phenomena including a sigmoidal input-output curve, common paired pulse effects (short interval intracortical inhibition, intracortical facilitation, long interval intracortical inhibition) including responses to pharmacological interventions, and a cortical silent period. Changes in MEP amplitude following theta burst paradigms were observed including variability in outcome direction.ConclusionsThe model reproduces effects seen in common TMS paradigms.SignificanceThe model allows population-based modeling of changes in cortical dynamics due to TMS protocols to be assessed in terms of changes in MEPs, thus allowing a clear comparison between population-based modeling predictions and typical experimental outcome measures.HighlightsA model of motor-evoked potential formation gives a realistic electromyogram in response to TMS.The model reproduces effects of SICI, ICF and LICI.A link between existing neural field modeling and realistic outcome measures of TMS is provided.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3