Giardiaalters commensal microbial diversity throughout the murine gut

Author:

Barash NR,Maloney JG,Singer SM,Dawson SC

Abstract

ABSTRACTGiardia lambliais the most frequently identified protozoan cause of intestinal infection. Over one billion people are estimated to have acute or chronic giardiasis, with infection rates approaching 90% in endemic areas. Despite its significance in global health, the mechanisms of pathogenesis associated with giardiasis remain unclear as the parasite neither produces a known toxin nor induces a robust inflammatory response.Giardiacolonization and proliferation in the small intestine of the host may, however, disrupt the ecological homeostasis of gastrointestinal commensal microbes and contribute to diarrheal disease associated with giardiasis. To evaluate the impact ofGiardiainfection on the host microbiota, we use culture-independent methods to quantify shifts in the diversity of commensal microbes throughout the entire gastrointestinal tract in mice infected withGiardia. We discovered thatGiardia’scolonization of the small intestine causes a systemic dysbiosis of aerobic and anaerobic bacterial taxa. Specifically, giardiasis is typified by both expansions in aerobicProteobacteriaand decreases in anaerobicFirmicutesandMelainabacteriain the murine foregut and hindgut. Based on these shifts, we created a quantitative index of murineGiardia-induced microbial dysbiosis. This index increased at all gut regions during the duration of infection, including both the proximal small intestine and the colon. Thus giardiasis could be an ecological disease, and the observed dysbiosis may be mediated directly via the parasite’s unique anaerobic fermentative metabolism or indirectly via parasite induction of gut inflammation. This systemic alteration of murine gut commensal diversity may be the cause or the consequence of inflammatory and metabolic changes throughout the gut. Shifts in the commensal microbiota may explain observed variation in giardiasis between hosts with respect to host pathology, degree of parasite colonization, infection initiation, and eventual clearance.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3