Sensitivity and specificity of a Bayesian single trial analysis for time varying neural signals

Author:

Mohl Jeff T.ORCID,Caruso Valeria C.ORCID,Tokdar Surya T.,Groh J. M.

Abstract

AbstractWe recently reported the existence of fluctuations in neural signals that may permit neurons to code multiple simultaneous stimuli sequentially across time1. This required deploying a novel statistical approach to permit investigation of neural activity at the scale of individual trials. Here we present tests using synthetic data to assess the sensitivity and specificity of this analysis. We fabricated datasets to match each of several potential response patterns derived from single-stimulus response distributions. In particular, we simulated dual stimulus trial spike counts that reflected fluctuating mixtures of the single stimulus spike counts, stable intermediate averages, single stimulus winner-take-all, or response distributions that were outside the range defined by the single stimulus responses (such as summation or suppression). We then assessed how well the analysis recovered the correct response pattern as a function of the number of simulated trials and the difference between the simulated responses to each “stimulus” alone. We found excellent recovery of the mixture, intermediate, and outside categories (>97% correct), and good recovery of the single/winner-take-all category (>90% correct) when the number of trials was >20 and the single-stimulus response rates were 50Hz and 20Hz respectively. Both larger numbers of trials and greater separation between the single stimulus firing rates improved categorization accuracy. These results provide a benchmark, and guidelines for data collection, for use of this method to investigate coding of multiple items at the individual-trial time scale.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3