Efficient minimizer orders for large values ofkusing minimum decycling sets

Author:

Pellow David,Pu Lianrong,Ekim BarişORCID,Kotlar Lior,Berger Bonnie,Shamir RonORCID,Orenstein YaronORCID

Abstract

Minimizers are ubiquitously used in data structures and algorithms for efficient searching, mapping, and indexing of high-throughput DNA sequencing data. Minimizer schemes select a minimumk-mer in everyL-long subsequence of the target sequence, where minimality is with respect to a predefinedk-mer order. Commonly used minimizer orders select morek-mers than necessary and therefore provide limited improvement in runtime and memory usage of downstream analysis tasks. The recently introduced universalk-mer hitting sets produce minimizer orders with fewer selectedk-mers. Generating compact universalk-mer hitting sets is currently infeasible fork> 13, and thus, they cannot help in the many applications that require minimizer orders for largerk. Here, we close the gap of efficient minimizer orders for large values ofkby introducingdecycling-set-based minimizer orders: new minimizer orders based on minimum decycling sets. We show that in practice these new minimizer orders select a number ofk-mers comparable to that of minimizer orders based on universalk-mer hitting sets and can also scale to a largerk. Furthermore, we developed a method that computes the minimizers in a sequence on the fly without keeping thek-mers of a decycling set in memory. This enables the use of these minimizer orders for any value ofk. We expect the new orders to improve the runtime and memory usage of algorithms and data structures in high-throughput DNA sequencing analysis.

Funder

United States–Israel Binational Science Foundation

Israel Science Foundation

Blavatnik Family Foundation

National Natural Science Foundation of China

National Institutes of Health

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3