Impact of Different Acoustic Components on EEG-based Auditory Attention Decoding in Noisy and Reverberant Conditions

Author:

Aroudi AliORCID,Mirkovic BojanaORCID,De Vos MaartenORCID,Doclo SimonORCID

Abstract

AbstractRecently, a least-squares-based method has been proposed to decode auditory attention from single-trial EEG recordings for an acoustic scenario with two competing speakers. This method aims at reconstructing the attended speech envelope from the EEG recordings using a trained spatio-temporal filter. While the performance of this method has been mainly studied for noiseless and anechoic acoustic conditions, it is important to fully understand its performance in realistic noisy and reverberant acoustic conditions. In this paper, we investigate auditory attention decoding (AAD) using EEG recordings for different acoustic conditions (anechoic, reverberant, noisy, and reverberant-noisy). In particular, we investigate the impact of different acoustic conditions for AAD filter training and for decoding. In addition, we investigate the influence on the decoding performance of the different acoustic components (i.e. reverberation, background noise and interfering speaker) in the reference signals used for decoding and the training signals used for computing the filters. First, we found that for all considered acoustic conditions it is possible to decode auditory attention with a decoding performance larger than 90%, even when the acoustic conditions for AAD filter training and for decoding are different. Second, when using reference signals affected by reverberation and/or background noise, a comparable decoding performance as when using clean reference signals can be obtained. In contrast, when using reference signals affected by the interfering speaker, the decoding performance significantly decreases. Third, the experimental results indicate that it is even feasible to use training signals affected by reverberation, background noise and/or the interfering speaker for computing the filters.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3