CD146+CD107a+ Mesenchymal Stem/Stromal Cells with Signature Attributes Correlate to Therapeutic Potency as “First Responders” to Injury and Inflammation

Author:

Bowles Annie C.ORCID,Kouroupis Dimitrios,Willman Melissa A.,Orfei Carlotta Perucca,Agarwal Ashutosh,Correa Diego

Abstract

ABSTRACTCD146+ bone marrow–derived Mesenchymal Stem/Stromal Cells (BM-MSC) play key roles in the perivascular niche, skeletogenesis and hematopoietic support, however elucidation of therapeutic potency has yet to be determined. Here, inflammatory challenge to crude BM-MSC captured a baseline of signatures including enriched expression of CD146+ with CD107a+, CXCR4+, and LepR+, transcriptional profile, enhanced secretory capacity, robust secretome and immunomodulatory function with stimulated target immune cells. These responses were significantly more pronounced in CD146+ (POS)-selected subpopulation than in the CD146- (NEG). Mechanistically, POS uniquely mediated robust immunosuppression while inducing significant frequencies of Naïve and Regulatory T cells in vitro. Moreover, POS promoted a pivotal M1-to-M2 macrophage shift in vivo, ameliorating inflammation/fibrosis of joint synovium and fat pad of the knee, failed by NEG. This study provides high-content evidence of CD146+CD107a+ BM-MSC, herein deemed ‘first responders’ to inflammation, as the underrepresented subpopulation within crude BM-MSC with innately higher secretory capacity and therapeutic potency.HIGHLIGHTSSignature phenotypic, transcriptional, and secretome profiles were identified and enriched in human CD146+ (POS)-selected subpopulation in response to inflammationInflammatory challenge consistently altered stemness (LIF) and differentiation master regulators (SOX9, RUNX2, PPARγ) in crude, POS, and NEG BM-MSC, and deduced unique expressions in POS compared to NEGPOS BM-MSC mediated the strongest immunomodulation, e.g. target immune cell suppression, Treg induction, diminished T cell differentiationPOS BM-MSC promoted the largest M1-to-M2 shift in vivo alleviating induced synovitis and infrapatellar fat pad fibrosis of the knee

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3