Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study

Author:

Tønnesen Siren,Kaufmann TobiasORCID,de Lange Ann-MarieORCID,Richard Genevieve,Doan Nhat TrungORCID,Alnæs DagORCID,van der Meer DennisORCID,Rokicki JaroslavORCID,Moberget TorgeirORCID,Maximov Ivan I.ORCID,Agartz IngridORCID,Aminoff Sofie R.ORCID,Beck Dani,Barch DeannaORCID,Beresniewicz Justyna,Cervenka SimonORCID,Bergman Helena Fatouros,Craven Alexander R.ORCID,Flyckt LenaORCID,Gurholt Tiril P.ORCID,Haukvik Unn K.ORCID,Hugdahl KennethORCID,Johnsen ErikORCID,Jönsson Erik G.ORCID,Kolskår Knut K.ORCID,Kompus KristiinaORCID,Kroken Rune AndreasORCID,Lagerberg Trine V.ORCID,Løberg Else-MarieORCID,Nordvik Jan EgilORCID,Sanders Anne-Marthe,Ulrichsen Kristine,Andreassen Ole A.ORCID,Westlye Lars T.ORCID,

Abstract

AbstractBackgroundSchizophrenia (SZ) and bipolar disorders (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, BD, and healthy controls across 10 cohorts.MethodsWe trained six cross-validated models using different combinations of DTI data from 927 healthy controls (HC, 18-94 years), and applied the models to the test sets including 648 SZ (18-66 years) patients, 185 BD patients (18-64 years), and 990 HC (17-68 years), estimating brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results.Results10-fold cross-validation revealed high accuracy for all models. Compared to controls, the model including all feature sets significantly over-estimated the age of patients with SZ (d=-.29) and BD (d=.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy (FA) based models showed larger group differences than the models based on other DTI-derived metrics.ConclusionsBrain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.

Publisher

Cold Spring Harbor Laboratory

Reference72 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3