A powerful subset-based gene-set analysis method identifies novel associations and improves interpretation in UK Biobank

Author:

Dutta DiptavoORCID,VandeHaar Peter,Fritsche Lars G.ORCID,Zöllner Sebastian,Boehnke Michael,Scott Laura J.,Lee SeunggeunORCID

Abstract

AbstractTests of association between a phenotype and a set of genes in a biological pathway can provide insights into the genetic architecture of complex phenotypes beyond those obtained from single variant or single gene association analysis. However, most existing gene set tests have limited power to detect gene set-phenotype association when a small fraction of the genes are associated with the phenotype, and no method exists which identifies the potentially “active” genes that might drive a gene-set-based association. To address these issues, we have developed Gene-set analysis Association Using Sparse Signals (GAUSS), a method for gene-set association analysis that requires only GWAS summary statistics. For each significantly associated gene set, GAUSS identifies the subset of genes that have the maximal evidence of association and can best account for the gene set association. Using pre-computed correlation structure among test statistics from a reference panel, our p-value calculation is substantially faster than other permutation or simulation-based approaches. In simulations with varying proportions of causal genes, we find that GAUSS effectively controls type 1 error rate and has greater power than several existing methods, particularly when a small proportion of genes account for the gene set signal. Using GAUSS, we analyzed UK Biobank GWAS summary statistics for 10,679 gene-sets and 1,403 binary phenotypes. We found that GAUSS is scalable and identified 13,466 phenotype and gene-set association pairs. Within these genes sets, we identify an average of 17.2 (max=405) genes that underlie these gene set associations.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3