Novel nuclear role of HDAC6 in prognosis and therapeutic target for colorectal cancer

Author:

García-Domínguez Daniel J.,Hontecillas-Prieto Lourdes,Kaliszczak Maciej,He Miaomiao,Burguillos Miguel Angel,Bekay RajaaORCID,Abdul-Salam Vahitha B.,Khozoie Combiz,Shah Khalid,O’Neill Kevin,de Álava Enrique,Silver Andrew,Syed Nelofer,Aboagye Eric O.,Hajji Nabil

Abstract

AbstractHistone deacetylase 6 (HDAC6) inhibition is a potential treatment of a wide range of cancer types via the acetylation of diverse proteins in the cytoplasm. However, the regulation of histone acetylation and the maintenance of higher-order chromatin structure remains unidentified. Here, we investigated the effect of selective inhibition of HDAC6 by histone acetylation, chromatin relaxation assays, co-immunoprecipitation, acetylome peptide array and in vivo RNA microarray. Our data shows that nuclear HDAC6 physically interacts with the Histone 4 lysine 12 residue, and that HDAC6 inhibition increases acetylation specifically at this residue in several cancer types. Inhibition induces major chromatin structure modulation, but has no equivalent effect on knockout HDAC6-/- MEF cells. We identified several novel HDAC6-deacetylated substrates and high expression of HDAC6 in colorectal cancer (CRC) tissue association with reduced levels of H4K12ac and independent of the key CRC driver mutations, but positively associated with EGFR expression. Furthermore, in vivo HDAC6 inhibition induces significant tumor regression in a CRC xenograft mice model with significant changes in the expression of functional nuclear genes. We also demonstrated that a DNA damaging agent in combination with selective HDAC6 inhibition is effective and acts synergistically, inducing chromatin relaxation and increased cell death in CRC cells. CRC tissues (Normal versus tumor; n=58 matched pairs) together with TCGA data analysis of 467 CRC patients showed that high HDAC6 expression is associated with metastasis, overall and disease-free survival, and is an independent risk factor of CRC stage progression. Our findings designate a new role for nuclear HDAC6 both in cancer prognosis and as a new therapeutic target for CRC and other types of cancer.HighlightHistone deacetylases 6 activity; Chromatin relaxation; Histone modifications; Gene array; DOX: doxorubicin; OXA: oxaliplatin; 5-FU: fluorouracil; Ac: acetylation; MNase: Micrococal nuclease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3