Selective BCL-XL Antagonists Eliminate Infected Cells from a Primary Cell Model of HIV Latency but not from Ex Vivo Reservoirs

Author:

Ren YanqinORCID,Huang Szu HanORCID,Macedo Amanda B.,Ward Adam R.ORCID,Alberto Winiffer D. Conce,Klevorn ThaisORCID,Leyre Louise,Chan Dora,Truong Ronald,Rohwetter Thomas,Zumbo Paul,Dündar FriederikeORCID,Betel DoronORCID,Kovacs Colin,Benko ErikaORCID,Bosque AlbertoORCID,Jones R. BradORCID

Abstract

AbstractHIV persists, despite antiviral immune responses and effective antiretroviral therapy, in viral reservoirs that seed rebound viremia if therapy is interrupted. Previously, we showed that the BCL-2 protein contributes to HIV persistence by conferring a survival advantage to reservoir-harboring cells. Here, we demonstrate that many of the BCL-2 family members are overexpressed in HIV-infected CD4+ T-cells, indicating increased tension between pro-apoptotic and pro-survival family members – as well as raising the possibility that the inhibition of pro-survival members may disproportionately affect the survival of HIV-infected cells. Based on these results, we chose to further study BCL2L1 (encoding the protein BCL-XL), due to its consistent overexpression and the availability of selective antagonists. Infection of primary CD4+ T-cells with either a clinical isolate, a CCR5-tropic strain, or a CXCR4-tropic strain of HIV resulted in increased BCL-XL protein expression; and treatment with two selective BCL-XL antagonists, A-1155463 and A-1551852, led to disproportionate cell death compared to uninfected CD4+ T-cells. In a primary cell model of latency, both BCL-XL antagonists drove significant reductions in total HIV DNA and in infectious cell frequencies both alone and in combination with the latency reversing agent bryostatin-1, with little off-target cytotoxicity. However, these antagonists, with or without bryostatin-1, or in combination with the highly potent latency reversing agent combination PMA + ionomycin, failed to reduce total HIV DNA and infectious reservoirs in ex vivo CD4+ T-cells from ART-suppressed donors. Our results add to growing evidence that bonafide reservoir-harboring cells are resistant to multiple “kick and kill” modalities - relative to latency models - and uncover BCL-XL antagonists as a facile approach to probing mechanistic underpinnings. We also interpret our results as encouraging of further exploration of BCL-XL antagonists for cure, where combination approaches may unlock the ability to eliminate ex vivo reservoirs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3