Structures of the Human LONP1 Protease Reveal Regulatory Steps Involved in Protease Activation

Author:

Shin MiaORCID,Watson Edmond R.ORCID,Novick Scott J.ORCID,Griffin PatrickORCID,Wiseman R. LukeORCID,Lander Gabriel C.ORCID

Abstract

AbstractThe human mitochondrial AAA+ protein LONP1 is a critical quality control protease involved in regulating diverse aspects of mitochondrial biology including proteostasis, electron transport chain activity, and mitochondrial transcription. As such, genetic or aging-associated imbalances in LONP1 activity are implicated in the pathologic mitochondrial dysfunction associated with numerous human diseases. Despite this importance, the molecular basis for LONP1-dependent proteolytic activity remains poorly defined. Here, we solved cryo-electron microscopy structures of human LONP1 to reveal the molecular mechanism of substrate proteolysis. We show that, like bacterial Lon, human LONP1 adopts both an open and closed spiral staircase orientation dictated by the presence of substrate and nucleotide. However, unlike bacterial Lon, human LONP1 contains a second spiral staircase within its ATPase domain that engages substrate to increase interactions with the translocating peptide as it transits into the proteolytic chamber for proteolysis. Further, we show that substrate-bound LONP1 includes a second level of regulation at the proteolytic active site, wherein autoinhibition of the active site is only relieved by the presence of a peptide substrate. Ultimately, our results define a structural basis for human LONP1 proteolytic activation and activity, establishing a molecular framework to understand the critical importance of this protease for mitochondrial regulation in health and disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3