Draft Genome Assemblies and Annotations of Agrypnia vestita Walker, and Hesperophylax magnus Banks Reveal Substantial Repetitive Element Expansion in Tube Case-making Caddisflies (Insecta: Trichoptera)

Author:

Olsen Lindsey K.,Heckenhauer JacquelineORCID,Sproul John S.ORCID,Dikow Rebecca B.ORCID,Gonzalez Vanessa L.,Kweskin Matthew P.ORCID,Taylor Adam M.,Wilson Seth B.,Stewart Russell J.ORCID,Zhou Xin,Holzenthal RalphORCID,Pauls Steffen U.ORCID,Frandsen Paul B.ORCID

Abstract

AbstractTrichoptera (caddisflies) play an essential role in freshwater ecosystems; for instance, larvae process organic material from the water and are food for a variety of predators. Knowledge on the genomic diversity of caddisflies can facilitate comparative and phylogenetic studies thereby allowing scientists to better understand the evolutionary history of caddisflies. While Trichoptera are the most diverse aquatic insect order, they remain poorly represented in terms of genomic resources. To date, all long-read based genomes have been sequenced from individuals in the retreat-making suborder, Annulipalpia, leaving ∼275 Ma of evolution without high-quality genomic resources. Here, we report the first long-read based de novo genome assemblies of two tube case-making Trichoptera from the suborder Integripalpia, Agrypnia vestita Walker and Hesperophylax magnus Banks. We find that these tube case-making caddisflies have genome sizes that are at least three-fold larger than those of currently sequenced annulipalpian genomes and that this pattern is at least partly driven by major expansion of repetitive elements. In H. magnus, long interspersed nuclear elements (LINEs) alone exceed the entire genome size of some annulipalpian counterparts suggesting that caddisflies have high potential as a model for understanding genome size evolution in diverse insect lineages.SignificanceThere is a lack of genomic resources for aquatic insects. So far, only three high-quality genomes have been assembled, all from individuals in the retreat-making suborder Annulipalpia. In this article, we report the first high-quality genomes of two case-making species from the suborder Integripalpia, which are essential for studying genomic diversity across this ecologically diverse insect order. Our research reveals larger genome sizes in the tube case-makers (suborder Integripalpia, infraorder Phryganides), accompanied by a disproportionate increase of repetitive DNA. This suggests that genome size is at least partly driven by a major expansion of repetitive elements. Our work shows that caddisflies have high potential as a model for understanding how genomic diversity might be linked to functional diversification and forms the basis for detailed studies on genome size evolution in caddisflies.Data depositionThis project has been deposited at NCBI under the Bioproject ID: PRJNA668166

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3