Empty sella syndrome as a window into the neuroprotective effects of prolactin

Author:

Paul David A.ORCID,Strawderman Emma,Rodriguez Alejandra,Hoang Ricky,Schneider Colleen L.,Haber Sam,Chernoff Benjamin L.,Shafiq Ismat,Williams Zoë R.,Vates G. Edward,Mahon Bradford Z.

Abstract

ABSTRACTBACKGROUNDTo correlate structural integrity of visual pathway white matter tracts with prolactin levels in a patient who demonstrates downward herniation of the optic chiasm secondary to medical treatment of a prolactinoma.METHODSA 36-year-old woman with a prolactinoma presented with progressive bilateral visual field defects nine years after initial diagnosis and medical treatment. She was diagnosed with empty-sella syndrome and instructed to stop cabergoline. Hormone testing was conducted in tandem with routine clinical evaluations over one year and the patient was followed with diffusion magnetic resonance imaging (dMRI), optical coherence tomography (OCT), and automated perimetry at three time points. Five healthy controls underwent a complementary battery of clinical and neuroimaging tests at a single time point.RESULTSShortly after discontinuing cabergoline, diffusion metrics in the optic tracts were within the range of values observed in healthy controls. However, following a brief period where the patient resumed cabergoline (of her own volition), there was a decrease in serum prolactin with a corresponding decrease in visual ability and increase in radial diffusivity (p<0.001). Those measures again returned to their baseline ranges after discontinuing cabergoline a second time.CONCLUSIONSThese results demonstrate the sensitivity of dMRI to detect rapid and functionally significant microstructural changes in white matter tracts secondary to alterations in serum prolactin levels. The inverse relations between prolactin and measures of diffusion and visual function provide support for a neuroprotective role of prolactin in the injured nervous system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3