Combined degradome and replicated small RNA sequencing identifies Brassica napus small RNAs responsive to infection by a necrotrophic pathogen

Author:

Regmi RoshanORCID,Newman Toby E.ORCID,Kamphuis Lars G.ORCID,Derbyshire Mark C.ORCID

Abstract

AbstractBackgroundSmall RNAs are short non-coding RNAs that are key gene regulators controlling various biological processes in eukaryotes. Plants may regulate discrete sets of sRNAs in response to pathogen attack. Sclerotinia sclerotiorum is an economically important pathogen affecting hundreds of plant species, including the economically important oilseed Brassica napus. However, there are limited studies on how regulation of sRNAs occurs in the S. sclerotiorum and B. napus pathosystem.ResultsWe identified different classes of sRNAs from B. napus by high throughput sequencing of replicated mock and infected samples at 24 hours post-inoculation (HPI). Overall, 3,999 sRNA loci were highly expressed, of which 730 were significantly upregulated during infection. Degradome sequencing identified numerous likely sRNA targets that were enriched for immunity-related GO terms, including those related to jasmonic acid signalling, during infection. A total of 73 conserved miRNA families were identified in our dataset. Degradome sequencing identified 434 unique cleaved mRNA products from these miRNAs, of which 50 were unique to the infected library. A novel miR1885-triggered disease resistance gene-derived secondary sRNA locus was identified and verified with degradome sequencing. We also experimentally validated silencing of a plant immunity related ethylene response factor gene by a novel sRNA using 5’-RACE.ConclusionsThe findings in this study expand the framework for understanding the molecular mechanisms of the S. sclerotiorum and B. napus pathosystem at the sRNA level.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3