ZIKA virus effects on neuroprogenitors are exacerbated by the main pyriproxyfen metabolite via thyroid hormone signaling disruption

Author:

Spirhanzlova Petra,Sébillot AnthonyORCID,Vancamp Pieter,Gothié Jean-DavidORCID,Mével Sébastien LeORCID,Leemans MichelleORCID,Wejaphikul Karn,Meima Marcel,Mughal Bilal B.,Butruille Lucile,Roques Pierre,Remaud Sylvie,Fini Jean-Baptiste,Demeneix Barbara A.

Abstract

AbstractNorth-Eastern Brazil saw intensive application of the insecticide pyriproxyfen (PPF) during the microcephaly outbreak caused by Zika virus (ZIKV). ZIKV requires the neural RNA-binding protein Musashi-1 to replicate. TH represses MSI1. Being a suspected TH disruptor, we hypothesized that co-exposure to the main metabolite of PPF, 4’-OH-PPF, would exacerbate ZIKV effects through increased MSI1 expression. This was tested using in vitro mouse neurospheres and an in vivo TH signaling reporter model, Xenopus laevis. TH signaling was decreased by 4’-OH-PPF in both models. In mouse-derived neurospheres the metabolite reduced neuroprogenitor proliferation as well as markers of neuronal differentiation. The results demonstrated that 4’-OH-PPF significantly induced MSI1 at both the mRNA and protein level, as well as Fasn mRNA. Other TH target genes were also significantly modified. Importantly, several key genes implicated in neuroprogenitor fate and commitment were not dysregulated by 4’-OH-PPF alone, but were in combination with ZIKV infection. These included the neuroprogenitor markers Nestin, Egfr, Gfap, Dlx2 and Dcx. Unexpectedly, 4’-OH-PPF decreased ZIKV replication, although only at the fourth and last day of incubation, and RNA copy numbers stayed within the same order of magnitude. However, intracellular RNA content of neuroprogenitors was significantly decreased in the combined presence of the PPF metabolite and ZIKV. We conclude that 4’-OH-PPF interferes with TH action in vivo and in vitro, inhibiting neuroprogenitor proliferation. In the presence of ZIKV, TH signaling pathways crucial for cortical development are significantly impacted. This provides another example of viral effects that are exacerbated by drug or pesticide use.Significance statementIn 2015, an increase in children born with unusually small heads (microcephaly) in North-Eastern Brazil was linked to infection with the ZIKA virus. An insecticide with thyroid hormone disruptive properties was used in the same areas. We investigated whether simultaneous exposure to the insecticide could increase viral susceptibility. The main metabolite 4’-OH-PPF dysregulated thyroid hormone signaling pathways crucial for brain development in both models used. Neural stem cells proliferated less and contained more Musashi-1, a protein the virus needs to replicate. Infecting stem cells pre-exposed to the endocrine disruptor did not amplify viral replication, but aggravated expression of genes implicated in brain development. Our results suggest the insecticide is particularly deleterious to brain development in areas with ZIKA virus prevalence.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3