Author:
Xu Lingyu,Xu Yuancheng,Hrybouski Stanislau,Paterson D Ian,Thompson Richard B.,Li Zhiyang,Lan Yulong,Butler Craig
Abstract
ABSTRACTBackgroundThis study investigated accuracy and consistency of epicardial adipose tissue (EAT) quantification in chest computed tomography (CT) scans.Methods and resultsEAT volume was quantified semi-automatically using a standard Hounsfield unit threshold (-190U, -30) in three independent cohorts: (1) Cohort 1 (N = 30) consisted of paired 120 KV cardiac non-contrast CT (NCCT) and 120 KV chest NCCT; (2) Cohort 2 (N = 20) consisted of paired 120 KV cardiac NCCT and 100 KV chest NCCT; (3) Cohort 3 (N = 20) consisted of paired chest NCCT and chest contrast-enhanced CT (CECT) datasets. Images were reconstructed with the slice thicknesses of 1.25 mm and 5 mm in the chest CT datasets, and 3 mm in the cardiac NCCT datasets. In Cohort 1, the chest NCCT-1.25 mm EAT volume was similar to the cardiac NCCT EAT volume, whilst chest NCCT-5 mm underestimated the EAT volume by 7.0%. In Cohort 2, 100 KV chest NCCT-1.25mm and -5 mm EAT volumes were 9.7% and 6.4% larger than corresponding 120 KV cardiac NCCT EAT volumes. In Cohort 3, the chest CECT dataset underestimated EAT volumes by ∼25%, relative to chest NCCT datasets. All chest CT-derived EAT volumes were strongly correlated with their cardiac CT counterparts.ConclusionsThe chest NCCT-1.25 mm EAT volume with the 120 KV tube energy produced EAT volumes that are comparable to cardiac NCCT. All chest CT EAT volumes were strongly correlated with EAT volumes obtained from cardiac CT, if imaging protocol is consistently applied to all participants.
Publisher
Cold Spring Harbor Laboratory