The FUR-like regulators PerRA and PerRB integrate a complex regulatory network that promotes mammalian host-adaptation and virulence of Leptospira interrogans

Author:

Grassmann André A.ORCID,Zavala-Alvarado Crispin,Bettin Everton B.ORCID,Picardeau Mathieu,Benaroudj Nadia,Caimano Melissa J.ORCID

Abstract

AbstractLeptospira interrogans, the causative agent of most cases of human leptospirosis, must respond to myriad environmental signals during its free-living and pathogenic lifestyles. Previously, we compared L. interrogans cultivated in vitro and in vivo using a dialysis membrane chamber (DMC) peritoneal implant model. From these studies emerged the importance of genes encoding the Peroxide responsive regulators PerRA and PerRB. First described in in Bacillus subtilis, PerRs are widespread in Gram-negative and -positive bacteria, where regulate the expression of gene products involved in detoxification of reactive oxygen species and virulence. Using perRA and perRB single and double mutants, we establish that L. interrogans requires at least one functional PerR for infectivity and renal colonization in a reservoir host. Our finding that the perRA/B double mutant survives at wild-type levels in DMCs is noteworthy as it demonstrates that the loss of virulence is not due to a metabolic lesion (i.e., metal starvation) but instead reflects dysregulation of virulence-related gene products. Comparative RNA-Seq analyses of perRA, perRB and perRA/B mutants cultivated within DMCs identified 106 genes that are dysregulated in the double mutant, including ligA, ligB and lvrA/B sensory histidine kinases. Decreased expression of LigA and LigB in the perRA/B mutant was not due to loss of LvrAB signaling. The majority of genes in the perRA and perRB single and double mutant DMC regulons were differentially expressed only in vivo, highlighting the importance of host signals for regulating gene expression in L. interrogans. Importantly, the PerRA, PerRB and PerRA/B DMC regulons each contain multiple genes related to environmental sensing and/or transcriptional regulation. Collectively, our data suggest that PerRA and PerRB are part of a complex regulatory network that promotes host adaptation by L. interrogans within mammals.Author SummaryLeptospirosis is a neglected tropical disease with a worldwide distribution. Globally, ~1 million cases and ~60,000 deaths are reported each year. The majority of cases of human leptospirosis are associated with Leptospira interrogans. Infection begins when a naïve reservoir (or incidental) host comes into direct or indirect contact with urine from an infected reservoir host. While infection in reservoir hosts, including rats and mice, is generally asymptomatic, incidental hosts, including humans, may develop clinical symptoms ranging from mild flu-like illness to fulminant disease. The gene products required by leptospires for infection remain poorly understood. Herein, we establish that the FUR family regulators PerRA and PerRB function in parallel, contributing to infectivity and renal colonization in mice. By comparative transcriptomics, we identified >100 genes that were dysregulated in the perRA/B double mutant cultivated in rat peritoneal cavities, including the virulence determinants LigA and LigB. Importantly, the PerRA, PerRB and PerRA/B DMC regulons contain multiple genes related to environmental sensing and/or transcriptional regulation. Our data suggest that PerRA and PerRB are part of a complex regulatory network that promotes host adaptation by L. interrogans within mammals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3