Sequential dynein effectors regulate axonal autophagosome motility in a maturation-dependent pathway

Author:

Cason Sydney E.ORCID,Carman PeterORCID,Duyne Claire VanORCID,Goldsmith JulietORCID,Dominguez RobertoORCID,Holzbaur Erika L.F.ORCID

Abstract

AbstractAutophagy is a degradative pathway required to maintain neuronal homeostasis. Neuronal autophagosomes form constitutively at the axon terminal and mature via lysosomal fusion during dynein-mediated transport to the soma. How the dynein-autophagosome interaction is regulated during maturation is unknown. Here, we identify a series of handoffs between dynein effectors as autophagosomes transit along the axons of primary neurons. In the distal axon, JIP1 initiates autophagosomal transport, while autophagosomes in the mid-axon require HAP1 and Huntingtin for motility. We demonstrate that HAP1 is a bonafide dynein activator, binding the dynein-dynactin complex via canonical and noncanonical interactions. JIP3 is found on most axonal autophagosomes but specifically regulates the transport of acidified autolysosomes. Inhibiting autophagosomal transport disrupts maturation, while inhibiting autophagosomal maturation perturbs the association and function of dynein effectors. Thus maturation and transport are tightly linked. These results describe a novel maturation-based dynein effector handoff on neuronal autophagosomes that is key to autophagosomal motility, cargo degradation, and the maintenance of axonal health.SummaryNeuronal autophagosomes form in the distal axon and mature via fusion with lysosomes during their dynein-driven transport to the soma. Dynein is regulated on autophagosomes by distinct effector proteins—JIP1, HAP1, and JIP3—depending on location and autophagosomal maturity. In this sequential pathway, transport and maturation state are tightly linked to maintain neuronal health.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3