Comparative Analysis of Embryo Proper and Suspensor Transcriptomes in Plant Embryos With Different Morphologies

Author:

Chen Min,Lin Jer-Young,Wu Xiaomeng,Apuya Nestor R.,Henry Kelli F.,Le Brandon H.,Bui Anhthu Q.,Pelletier Julie M.,Cokus Shawn,Pellegrini Matteo,Harada John J.,Goldberg Robert B.

Abstract

AbstractAn important question is what genes govern the differentiation of plant embryos into suspensor and embryo-proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant Scarlet Runner Bean and Common Bean suspensors. Genes involved in transport and Golgi body organization are up-regulated within the suspensors of these plants as well – strengthening the view that giant specialized suspensors serve as a hormone factory and a conduit for transferring substances to the developing embryo proper. By contrast, genes controlling transcriptional regulation, development, and cell division are up-regulated primarily within the embryo proper. Transcriptomes from less specialized soybean and Arabidopsis suspensors demonstrated that fewer genes encoding metabolic enzymes and hormones are up-regulated. Genes active in the embryo proper, however, are functionally similar to those active in Scarlet Runner Bean and Common Bean embryo proper regions. We uncovered a set of suspensor- and embryo-proper-specific transcription factors (TFs) that are shared by all embryos irrespective of morphology, suggesting that they are involved in early differentiation processes common to all plants. ChIP-Seq experiments with Scarlet Runner Bean and soybean WOX9, an up-regulated suspensor TF, gained entry into a regulatory network important for suspensor development irrespective of morphology.SignificanceHow plant embryos are differentiated into embryo proper and suspensor regions following fertilization is a major unanswered question. The suspensor is unique because it can vary in morphology in different plant species. We hypothesized that regulatory genes controlling the specification of embryo proper and suspensor regions should be shared by all plants irrespective of embryo morphology. We compared embryo proper and suspensor transcriptomes of plants with distinct suspensor morphologies. Scarlet Runner Bean and Common Bean have highly specialized giant suspensor regions, whereas soybean and Arabidopsis suspensors are smaller and less specialized. We uncovered a small set of embryo-proper- and suspensor-specific transcription factors shared by all embryos irrespective of morphology, suggesting that they play an important role in early embryo differentiation.

Publisher

Cold Spring Harbor Laboratory

Reference97 articles.

1. Plant Embryogenesis: Zygote to Seed

2. Evolution, Initiation, and Diversity in Early Plant Embryogenesis;Dev Cell,2019

3. Square one: zygote polarity and early embryogenesis in flowering plants;Curr Opin Plant Biol,2020

4. The short and intricate life of the suspensor;Physiol Plant,2020

5. Using giant scarlet runner bean embryos to uncover regulatory networks controlling suspensor gene activity;Frontiers in plant science,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3